[AI]Camera Calibration

Basic Theory

  • 3D좌표와 2D좌표를 사용하여 $K$ (3*3 행렬), $R$ (3*3 회전행렬), $t$(3*1 이동벡터)를 찾아 내는 것

    Camera Calibration equation

  • 3D좌표$( X_{\omega}, Y_{\omega}, Z_{\omega})$와 2D 이미지 투영 좌표$(u,v)$의 방정식
    • $\begin{bmatrix} x’ \ y’ \ z’ \end{bmatrix} = \mathbf{P} \begin{bmatrix} X_{\omega} \ Y_{\omega} \ Z_{\omega} \1 \end{bmatrix}$
    • $u$=$u’/_w$ $, v$=$v’/_w$
    • $P$ = $K \times \begin{bmatrix} Rt \end{bmatrix}$
      • $K$ : Intrinsic Matrix
      • $\begin{bmatrix} Rt \end{bmatrix}$ : Extrinsic Matrix
    • $K$ = $\begin{bmatrix} f_x & \gamma & c_x \ 0 & f_y & c_y \ 0 & 0 & 1\end{bmatrix}$
      • $f_x , f_y$ : 초점거리 (알반적으로 $f_x = f_y$)
      • $c_x , c_y$ : 이미지 평면에서 광학 중심의 x와y 좌표
      • $\gamma$ : 축 사이의 기울기 (일반적으로 0)

Pagination